Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies
نویسندگان
چکیده
Both episodic memory and spatial navigation require temporal encoding of the relationships between events or locations. In a linear maze, ordered spatial distances between sequential locations were represented by the temporal relations of hippocampal place cell pairs within cycles of theta oscillation in a compressed manner. Such correlations could arise due to spike "phase precession" of independent neurons driven by common theta pacemaker or as a result of temporal coordination among specific hippocampal cell assemblies. We found that temporal correlation between place cell pairs was stronger than predicted by a pacemaker drive of independent neurons, indicating a critical role for synaptic interactions and precise timing within and across cell assemblies in place sequence representation. CA1 and CA3 ensembles, identifying spatial locations, were active preferentially on opposite phases of theta cycles. These observations suggest that interleaving CA3 neuronal sequences bind CA1 assemblies representing overlapping past, present, and future locations into single episodes.
منابع مشابه
Selection of preconfigured cell assemblies for representation of novel spatial experiences.
Internal representations about the external world can be driven by the external stimuli or can be internally generated in their absence. It has been a matter of debate whether novel stimuli from the external world are instructive over the brain network to create de novo representations or, alternatively, are selecting from existing pre-representations hosted in preconfigured brain networks. The...
متن کاملDissociation between the experience-dependent development of hippocampal theta sequences and single-trial phase precession.
Theta sequences are circuit-level activity patterns produced when groups of hippocampal place cells fire in sequences that reflect a compressed behavioral order of place fields within each theta cycle. The high temporal coordination between place cells exhibited in theta sequences is compatible with the induction of synaptic plasticity and has been proposed as one of the mechanisms underlying t...
متن کاملNetwork dynamics of hippocampal cell-assemblies resemble multiple spatial maps within single tasks.
The firing of place cells in the rodent hippocampus is reliable enough to infer the rodent's position to a high accuracy; however, hippocampal firing also reflects the stages of complex tasks. Theories have suggested that these task-stage responses may reflect changes in reference frame related to task-related subgoals. If the hippocampus represents an environment in multiple ways depending on ...
متن کاملAltered phase precession and compression of temporal sequences by place cells in epileptic rats.
In the hippocampus, pyramidal cells encode information in two major ways: rate coding and temporal coding. Rate coding, in which information is coded through firing frequency, is exemplarily illustrated by place cells, characterized by their location-specific firing. In addition, the precise temporal organization of firing of multiple place cells provides information, in a compressed time windo...
متن کاملHippocampal place cell assemblies are speed-controlled oscillators.
The phase of spikes of hippocampal pyramidal cells relative to the local field theta oscillation shifts forward ("phase precession") over a full theta cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 50 شماره
صفحات -
تاریخ انتشار 2006